Heat emitted by buildings and other infrastructure accumulates in the subsurface. This additional heat can cause a pronounced shift in thermal boundary conditions of the important groundwater ecosystem. Shallow groundwater systems in Central Europe are often inhabited by communities of fauna adapted to cold and stable conditions as well as microorganisms, whose activity is dependent on ambient temperatures. At a local groundwater temperature hotspot of up to 23 °C, caused by a water park, we assessed the environmental impact of this thermal alteration on the shallow groundwater system. The results show that the overall groundwater quality at the site is influenced by anthropogenic land use, compared to wells in a nearby water protection zone. However, neither hydrochemical nor ecological characteristics of groundwater from wells in the vicinity of the water park indicate any significant dependence on temperature. Hence, we conclude that in this eutrophic and anoxic aquifer moderate heat stress does not lead to significant alterations in terms of hydrochemistry as well as microbiological properties. Due to the overall low oxygen concentrations (<1 mg/l), stygofauna is present only occasionally and cannot be used as bioindicators. These results have to be verified for other aquifer types and would benefit from a more in-depth analysis of microbial community composition.
Read full abstract