An efficient expression-secretion system for heterologous protein production in food-grade hosts, Lactobacillus plantarum and Bacillus subtilis, is still required to broaden their applications. The optimal signal peptide compatible with both the desired protein and the target host is important for the system. Here, we constructed new expression-secretion vectors to be used in both bacteria. A natural plasmid originating from food-grade L. plantarum BCC9546 was used as a core vector combined with a strong constitutive promoter, L-ldh promoter, and various signal peptides from several types of L. plantarum proteins: ABC transporter, cell wall-associated and extracellular proteins. A gene encoding 88-kDa amylase isolated from starch-related L. plantarum TBRC470 was used as a gene model to evaluate the systems. By comparing the amounts of secreted amylase from the recombinant strains to that of wild type, all signal peptides gave higher yields of secreted amylase in recombinant B. subtilis. Interestingly, two ABC transporter signal peptides from glutamine and mannose ABC transporters provided noticeably high levels of secreted amylase in recombinant L. plantarum. Moreover, these signal peptides also gave high yields of secreted amylase in recombinant B. subtilis. From the results, the signal peptide of glutamine ABC transporter, which functions in essential amino acid transportation that is a precursor for synthesis of nitrogen-containing compounds and nitrogen homeostasis, has a potential use in development of an efficient expression-secretion system for heterologous protein production in both food-grade hosts.
Read full abstract