Automatic target recognition (ATR) has made great progress with the development of deep learning. However, the target feature in synthetic aperture radar (SAR) image is not consistent with human vision, and the SAR training samples are always limited. These hard issues pose new challenges to the SAR ATR based on convolutional neural network (CNN). In this letter, we propose an improved CNN model to solve the limited sample issue via the feature augmentation and ensemble learning strategies. Normally, the high-level features that are more comprehensive and discriminative than the middle-level and low-level features are always employed for category discrimination. In order to make up the insufficient training features in the limited sample case, the cascaded features from optimally selected convolutional layers are concatenated to provide more comprehensive representation for the recognition. To take full advantage of these cascaded features, the ensemble learning-based classifier, namely, the AdaBoost rotation forest (RoF), is introduced to replace the original softmax layer to realize a more accurate limited sample recognition. Through the AdaBoost RoF method, not only are these features further enhanced by the rotation matrix but also a strong classifier is constructed by several weak classifiers with different adjusted weights. The experimental results on MSTAR data set show that the cascaded features and ensemble weak classifiers can fully exploit effective information in limited samples. Compared with the existing CNN method, the proposed method can improve the recognition accuracy by about 20% under the condition of ten training samples per class.