Abstract
Driven by the great success of deep convolutional neural networks (CNNs) that are currently used by quite a few computer vision applications, we extend the usability of visual-based CNNs into the synthetic aperture radar (SAR) data domain without employing transfer learning. Our SAR automatic target recognition (ATR) architecture efficiently extends the pretrained Visual Geometry Group CNN from the visual domain into the X-band SAR data domain by clustering its neuron layers, bridging the visual—SAR modality gap by fusing the features extracted from the hidden layers, and by employing a local feature matching scheme. Trials on the moving and stationary target acquisition dataset under various setups and nuisances demonstrate a highly appealing ATR performance gaining 100% and 99.79% in the 3-class and 10-class ATR problem, respectively. We also confirm the validity, robustness, and conceptual coherence of the proposed method by extending it to several state-of-the-art CNNs and commonly used local feature similarity/match metrics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.