We report the comparative synthetic methodologies and characterization of a tetradentate Schiff base ligand 1,2-(diimino-4′-antipyrinyl)-1,2-diphenylethane (DE). The target synthesis of oxovanadium(IV) and dioxouranium(VI) complexes (vanadyl and uranyl) with the (DE) ligand was also attempted to envisage the effect of metal ion steric factor on complexation process through solution phase thermodynamic and kinetic studies. The thermodynamic stabilities of synthesized vanadyl and uranyl (DE) complexes are discussed in light of their solution phase thermodynamic stability constants obtained by electroanalytical method. A comparative kinetic profile of vanadyl and uranyl complexation with DE is also reported. The complexation reaction proceeds with an overall 2nd order kinetics with both metal ions. Temperature dependent studies of rate constants present an activation energy barrier of ca. 40.913 and 48.661 KJ mol−1, for vanadyl and uranyl complexation, respectively, highlighting the metal ion steric and ligand preorganization effects. The synthesized Schiff base ligand and its vanadyl and uranyl complexes were screened for biocidal potential as antibacterial, antifungal, and anthelmintic agents with the results compared to corresponding reference drugs.
Read full abstract