Bacterial cellulose (BC) regularly uses chemical or physical modifications to produce antimicrobial wound dressings. However, there is a risk of loss of functional components during application. Moreover, a significant hurdle lies in successfully integrating durable and highly effective bactericidal entities with BC. Herein, we successfully synthesized a photodynamic antibacterial cellulose through direct in situ microbial fermentation, incorporating the photosensitizer protoporphyrin IX-modified glucosamine (PPIX-GlcN) into cellulose to form PIXX-BC biopolymers. Excitingly, the PPIX-BC membrane exhibited robust and uniform red fluorescence, which is crucial for monitoring the bacterial fermentation process. Our results demonstrated that the biocompatibility PPIX-BC membrane possessed potent light-triggered photodynamic bactericidal activity, effectively suppressing the growth of E. coli and S. aureus while also promoting skin wounds repair. Consequently, this research validated the possibility of leveraging microorganisms to bio-functionalize BC, conferring it with photocatalytic antibacterial properties. Furthermore, successfully modification of the microorganisms' glucose carbon source offers valuable insights into biosynthesis of other living materials through microbial metabolism.
Read full abstract