We have assessed the relative content and distribution of Iron and Zinc elements using microbeam synchrotron radiation X-ray fluorescence technique. One such technique is X-ray fluorescence (XRF), which has been used previously to map trace elements distribution in Physical samples. In this article a compromise is suggested in issue Pterygium samples. In this study, a prospective randomized clinical trial was conducted. Serial frozen sections of pterygium tissues and conjunctival tissues of 40 μm thickness were collected from 8 patients £¨10 eyes£©undergoing pterygium excision combine with limbal stem cell transplantation. A synchrotron-based XRF microprobe was used to map the distribution of Fe and Zn in whole frozen pterygium sections. The frozen sections were tested by synchrotron radiation X-ray fluorescence technique. These experiments were performed at BL15U in Shanghai, China. Then, the results have palyed that Iron and Zinc were present in both pterygium tissues and normal conjunctiva tissues (relevance ratio 100%). The contents of Iron and Zinc in normal conjunctiva tissues were significantly lower than in pterygium tissues (P < 0.05). The microelements were mostly clusteredin the pterygium tissues, while sparsely distributed in the normal conjunctiva tissue. Finally, we found that XRF imaging will be useful for mapping elemental distribution in Pterygium tissues. 40 μm frozen section on 6 μm mylar film is good for the test on BL15U. The contents of Iron and Zinc in pterygium tissue were significantly higher than in the control tissues. The results seem to be valuable in that Iron and Zinc may play a role in the development process of Pterygium.
Read full abstract