Abstract
We have used synchrotron-based X-ray fluorescence and absorption techniques to establish both metal distribution and complexation in mature wheat grains. In planta, extended X-ray absorption fine structure (EXAFS) spectroscopy reveals iron phytate and zinc phytate structures in aleurone cells and in modified aleurone cells in the transfer region of the grain: iron is coordinated octahedrally by six oxygen atoms and fewer than two phosphorous atoms. Zinc is coordinated tetrahedrally by four oxygen atoms and approximately 1.5 phosphorus atoms in an asymmetric coordination shell. We also present evidence of modified complexation of both metals in transgenic grain overexpressing wheat ferritin. For zinc, there is a consistent doubling of the number of complexing phosphorus atoms. Although there is some EXAFS evidence for iron phytate in ferritin-expressing grain, there is also evidence of a structure lacking phosphorus. This change may lead to an excess of phosphorus within the storage regions of grain, and in turn to the demonstrated increased association of phosphorus with zinc in ferritin-expressing grains. Derivative X-ray absorption spectra also suggest that mineral complexation in the transfer region of ferritin-expressing grains is quite different from that in wild-type grain. This may explain why the raised levels of minerals transported to the developing grain accumulate within the crease region of the transgenic grain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.