We prove that an effective, analytic action of a connected Lie group G on an analytic manifold M becomes free on a comeager subset of an open subset of M when prolonged to a frame bundle of sufficiently high order. We further prove that the action of G becomes free on a comeager subset of an open subset of a submanifold jet bundle over M of sufficiently high order, thereby establishing a general result that underlies Lie's theory of symmetry groups of differential equations and the equivariant method of moving frames.