Abstract

We prove that an effective, analytic action of a connected Lie group G on an analytic manifold M becomes free on a comeager subset of an open subset of M when prolonged to a frame bundle of sufficiently high order. We further prove that the action of G becomes free on a comeager subset of an open subset of a submanifold jet bundle over M of sufficiently high order, thereby establishing a general result that underlies Lie's theory of symmetry groups of differential equations and the equivariant method of moving frames.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.