Let $X_{1}, \ldots,X_m$ be $m$ pairwise disjoint sets with the same size $n$, and let $\{k_1,\ldots,k_m\}$ be a multiset of positive integers such that $k_i\leq n/2$. Let $X=X_{1}\cup\cdots\cup X_{m}$ and $k=k_1+\cdots+k_m$. Given a $k$-set $A\subseteq X$, let $I(A)$ be the $m$-element multiset $\{|A \cap X_{1}|,\ldots,|A\cap X_m|\}$. Set $\Omega=\{ A\in \binom {X}{k}\colon\,{$I(A)=\k_1,łdots,k_m\$}\}$. In this paper, we prove that if $\mathcal{F}$ is an intersecting family in $\Omega$, then $|\mathcal F|\leq \frac{k}{nm}p(k_1,\ldots,k_m)\prod_{i=1}^m\binom{n}{k_i}$, where $p(k_1,\ldots,k_m)$ equals the number of permutations of $k_1,\ldots,k_m$. Furthermore, equality holds if and only if $\mathcal{F}=\left\{ A\in \Omega:a\in A\right\}$ for some $a\in X$, except in the case $k_1=\cdots=k_m=n/2$.
Read full abstract