Abstract

The cosmetic crossing conjecture (also known as the “nugatory crossing conjecture”) asserts that the only crossing changes that preserve the oriented isotopy class of a knot in the 3-sphere are nugatory. We use the Dehn surgery characterization of the unknot to prove this conjecture for knots in integer homology spheres whose branched double covers are L-spaces satisfying a homological condition. This includes as a special case all alternating and quasi-alternating knots with square-free determinant. As an application, we prove the cosmetic crossing conjecture holds for all knots with at most nine crossings and provide new examples of knots, including pretzel knots, non-arborescent knots and symmetric unions for which the conjecture holds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.