Abstract

For some time the Petersen graph has been the only known Snark with circular flow number $5$ (or more, as long as the assertion of Tutte's $5$-flow Conjecture is in doubt). Although infinitely many such snarks were presented eight years ago by Macajova and Raspaud, the variety of known methods to construct them and the structure of the obtained graphs were still rather limited. We start this article with an analysis of sets of flow values, which can be transferred through flow networks with the flow on each edge restricted to the open interval $(1,4)$ modulo $5$. All these sets are symmetric unions of open integer intervals in the ring $\mathbb{R}/5\mathbb{Z}$. We use the results to design an arsenal of methods for constructing snarks $S$ with circular flow number $\phi_c(S)\ge 5$. As one indication to the diversity and density of the obtained family of graphs, we show that it is sufficiently rich so that the corresponding recognition problem is NP-complete.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.