We proposed and experimentally demonstrated a broadband terahertz (THz) metamaterial absorber based on a symmetrical L-shaped metallic resonator. The absorber structure produces two absorption peaks at 0.491 and 0.73 THz, with the absorption rates of 98.6% and 99.6%, respectively. Broadband absorption was obtained from 0.457 to 1 THz, achieving a >90% absorption bandwidth of 0.543 THz. By analyzing the distributions of the electric and magnetic field at the two resonance frequencies, electric and magnetic dipole resonances were proposed to explain the broadband absorption mechanism. Furthermore, various widths and lengths of the symmetrical L-shaped metallic resonator on the absorption characteristics were investigated. Moreover, the broadband absorption characteristic can be maintained with an incident angle of up to 45° for transverse-electric and 30° for transverse-magnetic polarization. Finally, we experimentally observed a >70% broadband absorption characteristic from 0.42 to 1 THz. This proposed absorber has the potential for bolometric imaging, modulating, and spectroscopy in the THz region.
Read full abstract