The main purpose of this paper is to explore the structure of local and regular Dirichlet forms associated with symmetric one-dimensional diffusions, which are also called symmetric linear diffusions. Let ( E , F ) (\mathcal {E},\mathcal {F}) be a regular and local Dirichlet form on L 2 ( I , m ) L^2(I,m) , where I I is an interval and m m is a fully supported Radon measure on I I . We shall first present a complete representation for ( E , F ) (\mathcal {E},\mathcal {F}) , which shows that ( E , F ) (\mathcal {E},\mathcal {F}) lives on at most countable disjoint “effective" intervals with an “adapted" scale function on each interval, and any point outside these intervals is a trap of the one-dimensional diffusion. Furthermore, we shall give a necessary and sufficient condition for C c ∞ ( I ) C_c^\infty (I) being a special standard core of ( E , F ) (\mathcal {E},\mathcal {F}) and shall identify the closure of C c ∞ ( I ) C_c^\infty (I) in ( E , F ) (\mathcal {E},\mathcal {F}) when C c ∞ ( I ) C_c^\infty (I) is contained but not necessarily dense in F \mathcal {F} relative to the E 1 1 / 2 \mathcal {E}_1^{1/2} -norm. This paper is partly motivated by a result of Hamza’s that was stated in a theorem of Fukushima, Oshima, and Takeda’s and that provides a different point of view to this theorem. To illustrate our results, many examples are provided.
Read full abstract