Abstract

We start this study with last multipliers and the Liouville equation for a symmetric and non-degenerate tensor field Z of (0, 2)-type on a given Riemannian geometry (M, g) as a measure of how far away is Z from being divergence-free (and hence \(g^C\)-harmonic) with respect to g. The some topics are studied also for the Riemannian curvature tensor of (M, g) and finally for a general tensor field of (1, k)-type. Several examples are provided, some of them in relationship with Ricci solitons. Inspired by the Riemannian setting, we introduce last multipliers in the abstract framework of Dirichlet forms and symmetric Markov diffusion semigroups. For the last framework, we use the Bakry-Emery carre du champ associated to the infinitesimal generator of the semigroup.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.