In a crowdsourcing contest, a principal holding a task posts it to a crowd. People in the crowd then compete with each other to win the rewards. Although in real life, a crowd is usually networked and people influence each other via social ties, existing crowdsourcing contest theories do not aim to answer how interpersonal relationships influence people's incentives and behaviors and thereby affect the crowdsourcing performance. In this work, we novelly take people's social ties as a key factor in the modeling and designing of agents' incentives in crowdsourcing contests. We establish two contest mechanisms by which the principal can impel the agents to invite their neighbors to contribute to the task. The first mechanism has a symmetric Bayesian Nash equilibrium, and it is very simple for agents to play and easy for the principal to predict the contest performance. The second mechanism has an asymmetric Bayesian Nash equilibrium, and agents' behaviors in equilibrium show a vast diversity which is strongly related to their social relations. The Bayesian Nash equilibrium analysis of these new mechanisms reveals that, besides agents' intrinsic abilities, the social relations among them also play a central role in decision-making. Moreover, we design an effective algorithm to automatically compute the Bayesian Nash equilibrium of the invitation crowdsourcing contest and further adapt it to a large graph dataset. Both theoretical and empirical results show that the new invitation crowdsourcing contests can substantially enlarge the number of participants, whereby the principal can obtain significantly better solutions without a large advertisement expenditure.