Internet traffic is doubling almost every other year which implies that datacenter (DC) scalability will play a critical role in enabling future communications. In this paper, we propose FISSION (Flexible Interconnection of Scalable Systems Integrated using Optical Networks)—a scalable, fault-tolerant DC architecture based on a switchless optical-bus backplane and carrier-class switches, and its supporting protocol. The FISSION DC enables unprecedented scalability using affordable optics and standardized electrical switches. It is architecturally bifurcated into sectors that internally have a nonblocking carrier-class switching interconnection structure. Sectors are connected in the switchless backplane using optical buses. Each sector can receive traffic on all wavelengths (achieved through optical-bus property without any switch reconfiguration) and across all fibers, but a sector transmits on only a group of wavelengths and only in one of the fiber rings in the backplane. The switches function based on an SDN methodology that facilitate mapping of complex protocols and addresses to DC-specific addressing that is scalable and easier to use. We present an analysis to optimize the FISSION architecture. A simulation model is proposed that (1) compares the FISSION approach to other contemporary designs; (2) provides scalability analysis and protocol performance measurement; and, (3) provides optical layer modeling to validate working of the FISSION framework at high line-rates. Our architecture, which provides 100% bisection bandwidth, is validated by simulation results exhibiting negligible packet loss and low end-to-end latency.