Background To determine hemodynamic parameters from 4D flow MRI, vessel boundaries are typically depicted by calculating a 3D phase contrast MR angiogram (PC-MRA) from 4D flow magnitude and flow images. However, this approach is limited by 1) low blood-tissue contrast of the magnitude images and 2) velocity weighting of PC-MRA may not fully depict areas of slow or swirling (vortex) flow. As a result, 3D flow analysis at the aortic root has been challenging due to the presence of vortex flow distal to the aortic valve. Fast 3D balanced steady state free precession (bSSFP) time-resolved MRI sequences offer a promising alternative, providing anatomical images with improved blood-tissue contrast. The goal of this feasibility study was to integrate results from 3D CINE bSSFP with 4D flow MRI to improve the segmentation of vessel anatomy and thus 3D blood flow assessment compared to standard segmentation using PC-MRA data alone.
Read full abstract