The current study aims to develop a novel power generation system that is capable of working with a Stirling engine. Within this context, a β-type Stirling engine design has been created with a bell-crank motion mechanism and a 365 cm3 swept volume. The engine has been manufactured, and then a detailed assessment has been conducted to determine the impact of the motion mechanism on engine performance characteristics. The designed and manufactured engine has been tested using a range of working fluids, such as air, argon, carbon dioxide, helium, and nitrogen gases. The performance tests of this engine have been carried out at 1000 K (±10) heater and 300 K (±5) coolant temperatures. Based on the outcomes of the experimental studies, the highest engine power and torque values have been obtained at a charge pressure of 4 bar using helium gas, with 143.5 W at 267 rpm and 7.75 Nm at 100 rpm, respectively. Moreover, the maximum engine power values obtained from other tests with nitrogen, air, carbon dioxide and argon gases have been compared with helium gas. Helium gas has been found to outperform nitrogen, air, carbon dioxide, and argon gases in tests by 67.3%, 73.9%, 197.1%, and 200.2%, respectively. Finally, the highest thermal efficiency value has been obtained with helium gas as 48.7% at a charge pressure of 4 bar.
Read full abstract