Rice (Oryza sativa) is a crucial staple crop for global food security, particularly in Asia. However, rice production faces significant challenges from various diseases that can cause substantial yield losses. This review explores the role of genetic resistance in rice disease management, focusing on the molecular mechanisms underlying plant–pathogen interactions and strategies for developing resistant varieties. The paper discusses qualitative and quantitative resistance, emphasizing the importance of resistance (R) genes, defense-regulator genes, and quantitative trait loci (QTLs) in conferring broad-spectrum disease resistance. Gene-for-gene relationships in rice–pathogen interactions are examined, particularly for Xanthomonas oryzae pv. oryzae and Magnaporthe oryzae. The review also covers recent advancements in breeding techniques, including marker-assisted selection, genetic engineering, and genome editing technologies like CRISPR-Cas. These approaches offer promising avenues for enhancing disease resistance in rice while maintaining yield potential. Understanding and exploiting genetic resistance mechanisms is crucial for developing durable and broad-spectrum disease-resistant rice varieties, essential for ensuring sustainable rice production and global food security in the face of evolving pathogen threats and changing environmental conditions.
Read full abstract