The administration of nerve growth factor (NGF) into the brain of a fornix-fimbria lesioned rat can rescue many cholinergic, septal-basal forebrain (SBF) neurons from imminent cell death. Unfortunately, it is unclear if NGF can stimulate regenerative growth from axotomized, SBF neurons. In the present study, we used an in vitro model system to determine if NGF could affect neurite outgrowth from nonaxotomized and/or axotomized, embryonic SBF neurons. Axotomized neurons were obtained by severing the neuritic fields surrounding embryonic day (E) 15 SBF explants maintained in primary culture. Acetylcholinesterase (AChE) histochemistry was used to assess the effects of NGF on cholinergic neurites. We report that 1) neurite outgrowth on type I collagen from E15 SBF neurons in primary culture (nonaxotomized neurons) was not affected by NGF. 2) NGF enhanced the outgrowth (regeneration) of axotomized, SBF neurons on a collagen substratum; however, neurons had to be treated with NGF both before and after axotomy to stimulate regeneration effectively. Application of NGF either before or after axotomy did not enhance regenerative neurite outgrowth. 3) SBF neurons had to be axotomized for NGF to facilitate neurite outgrowth. This is supported by the observation that SBF explants, initially maintained in NGF-supplemented medium in suspension culture, did not demonstrate enhanced neurite outgrowth in the presence of NGF when plated onto a substratum. 4) The regenerative growth of AChE-negative, as well as AChE-positive, neurites was facilitated by NGF treatment. In addition to data concerning neurite outgrowth, we also found that the NGF receptor, as recognized by the antibody 192-IgG, expands its distribution as time in culture progresses; i.e., staining, originally confined to cell bodies and proximal processes within the explant, later included neurites that emanated from the explant. Thus, our results demonstrate that NGF can stimulate regenerative growth from axotomized, but not nonaxotomized, embryonic SBF neurons. We hypothesize that, given the appropriate substratum for axon elongation in vivo, NGF can stimulate the regeneration of SBF neurons in the injured adult brain.
Read full abstract