NK cells play an important role in controlling viral infections. They can kill virus-infected cells directly as well as indirectly via antibody-dependent, cell-mediated cytotoxicity. They need no prior sensitization and expansion for this killing. NK cells are also considered as important regulators of antiviral immune responses. They do so by secreting a multitude of soluble mediators and by directly interacting with other immune cells, e.g., dendritic cells. NK cells do not possess a single well-defined receptor to recognize antigens on target cells. Instead, they express an array of inhibitory and activating receptors and coreceptors, which bind to their cognate ligands expressed on the surface of target cells. These ligands include classical and nonclassical MHC class I antigens, MHC-like proteins, and a variety of other self- and virus-derived molecules. They may be expressed constitutively and/or de novo on the surface of virus-infected cells. NK cell receptors (NKRs) of the killer-cell Ig-like receptor (KIR) family, like their MHC class I ligands, are highly polymorphic. Several recent studies suggest that epistatic interactions between certain KIR and MHC class I genes may determine innate resistance of the host to viral infections, including HIV. In the first part of this review article, we provide an overview of the current state of knowledge of NK cell immunobiology and describe how NKR genes, alone and in combination with HLA genes, may determine genetic resistance/susceptibilty to HIV infection and the development of AIDS in humans.