Abstract

Human immunodeficiency virus type 1 (HIV-1) acquires several host cell membrane proteins when it buds from infected cells. To study the effect of virally incorporated host-derived ICAM-1 glycoproteins on the biology of HIV-1, we have developed a transient expression system that has enabled us to produce virus particles differing only in the absence or the presence of virion-bound ICAM-1. By using a single-round infection assay based on an ICAM-1-negative target T-cell line stably transfected with an HIV-1 long terminal repeat driven luciferase gene construct, we have been able to demonstrate that the acquisition of host-derived ICAM-1 by HIV-1 has functional significance, since it leads to a pronounced increase in viral infectivity (4.6- to 9.8-fold) in an ICAM-1/LFA-1-dependent fashion, as shown by blocking with anti-ICAM-1 and -LFA-1 antibodies. The same potentiating effect on viral infectivity was also observed with monocytoid cells. Studies of the kinetics of infection revealed that the positive effect mediated by virally embedded host cell membrane ICAM-1 is due to an increase in the efficiency of early steps in the viral life cycle. These results provide new insights into how incorporation of host proteins can modulate the biological properties of HIV-1. Our findings have direct clinical relevance, considering that ICAM-1 is expressed on the surface of virus-infected cells and, more importantly, that host-derived ICAM-1 has been shown to be acquired by clinical HIV-1 isolates grown on primary mononuclear cells. These data justify a more complete analysis of the other putative role(s) that virally incorporated ICAM-1 may play in the life cycle of HIV-1, for example, at the level of neutralization sensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.