Oxygen evolution reaction (OER) plays key roles in electrochemical energy conversion devices. Recent advances have demonstrated that OER catalysts through lattice oxygen-mediated mechanism (LOM) can bypass the scaling relation-induced limitations on those catalysts through adsorbate evolution mechanism (AEM). Among various catalysts, IrOx , the most promising OER catalyst, suffers from low activities for its AEM pathway. Here, it is demonstrated that a pre-electrochemical acidic etching treatments on the hybrids of IrOx and Y2 O3 (IrOx /Y2 O3 ) switch the AEM-dominated OER pathway to LOM-dominated one in alkali electrolyte, delivering a high performance with a low overpotential of 223mV at 10mA cm-2 and a long-term stability. Mechanism investigations suggest that the pre-electrochemical etching treatments create more oxygen vacancies in catalysts due to the dissolution of yttrium and then provide highly active surface lattice oxygen for participating OER, thereby enabling the LOM-dominated pathway and resulting in a significantly increased OER activity in basic electrolyte.