Abstract

The development of selective catalytic reduction catalysts by NH3(NH3-SCR) with excellent low-temperature activity and a wide temperature window is highly demanded but is still very challenging for the elimination of NOx emission from vehicle exhaust. Herein, a series of sulfated modified iron-cerium composite oxide Fe1-xCexOδ-S catalysts were synthesized. Among them, the Fe0.79Ce0.21Oδ-S catalyst achieved the highest NOx conversion of more than 80% at temperatures of 175-375 °C under a gas hourly space velocity of 100000 h-1. Sulfation formed a large amount of sulfate on the surface of the catalyst and provided rich Brønsted acid sites, thus enhancing its NH3 adsorption capacity and improving the overall NOx conversion efficiency. The introduction of Ce is the main determining factor in regulating the low-temperature activity of the catalyst by modulating its redox ability. Further investigation found that there is a strong interaction between Fe and Ce, which changed the electron density around the Fe ions in the Fe0.79Ce0.21Oδ-S catalyst. This weakened the strength of the Fe-O bond and improved the lattice oxygen mobility of the catalyst. During the reaction, the iron-cerium composite oxide catalyst showed higher surface lattice oxygen activity and a faster replenishment rate of bulk lattice oxygen. This significantly improved the adsorption and activation of NOx species and the activation of NH3 species on the catalyst surface, thus leading to the superior low-temperature activity of the catalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.