Evidence has demonstrated that monitoring of the variable, diversity, and joining gene segments (VDJ) rearrangement of the immunoglobulin (Ig) genes in the circulating tumor DNA (ctDNA) is of value in predicting the outcomes of diffuse large B cell lymphoma (DLBCL). In this study, we investigated the role of VDJ rearrangement proportion in ctDNA for predicting DLBCL progression. Patients diagnosed with newly diagnosed DLBCL were included in this study. The VDJ sequences of IgH were detected using next-generation sequencing (NGS) in formalin-fixed paraffin-embedded tissue and/or peripheral blood. The clonotype of the highest proportion in the peripheral blood was defined as the "dominant circulating clonotype," whilst the clonotype of the highest proportion in matched tissue that is detected in peripheral blood was defined as the "dominant tissue-matched clonotype." The decision tree, a machine learning-based methodology, was used to establish a progression-predicting model through a combination of "dominant tissue-matched clonotype" proportion or "dominant circulating clonotype" proportion, and the clinicopathological information, including age, sex, cell of origin, stage, international prognostic index, lactate dehydrogenase, number of extranodal involvements and β2-microglobulin. A total of 55 patients with eligible sequencing data were used for prognosis analysis, among which 36 patients had matched tissue samples. The concordance rate of "dominant circulating clonotype" and "dominant tissue-matched clonotype" was 19.44% (7/36). The decision tree model showed that the combination of extranodal involvement event and "dominant circulating clonotype" proportion (≥37%) had a clinical value in predicting the prognosis of DLBCL following combined chemotherapy (sensitivity, 0.63; specificity, 0.81; positive prediction value (PPV), 0.59; negative prediction value, 0.83; kappa value, 0.42). Noticeably, the combination of the "dominant tissue-matched clonotype" and extranodal involvement event showed a higher value in predicting the progression (sensitivity, 0.85; specificity, 0.78; PPV, 0.69; kappa value, 0.64). IgH proportion detected in the ctDNA samples traced from tissue samples has a high clinical value in predicting the progression of DLBCL.