ARaman-active boronate modified surface-enhanced Raman scattering (SERS) microporous array chip based on the enzymatic reaction was constructed for reliable, sensitive, and quantitative monitoring of D-Proline (D-Pro) and D-Alanine (D-Ala) in saliva. Initially, 3-mercaptophenylboronic acid (3-MPBA) was bonded to Au-coated Si nanocrown arrays (Au/SiNCA) via Au-S bonding. Following this, H2O2 obtained from D-amino acid oxidase (DAAO)-specific catalyzed D-amino acids (D-AAs) further reduced 3-MPBA to 3-hydroxythiophenol (3-HTP) with a new Raman peak at 882cm-1. Meanwhile, the original characteristic peak at 998cm-1 remained unchanged. Therefore, the I882/I998 ratio increased with increasing content ofD-AAs in the sample to be tested, allowing D-AAs to be quantitatively detected. TheAu/SiNCA with large-area periodic crown structure prepared provided numerous, uniform "hot spots," and the microporous array chip with 16 detection units was employed as the platform for SERS analysis, realizing high-throughput, high sensitivity, high specificity and high-reliability quantitative detection of D-AAs (D-Pro and D-Ala). The limits of detection (LOD) were down to 10.1µM and 13.7µM throughout the linear range of 20-500µM. The good results of the saliva detection suggested that this SERS sensor could rapidly differentiate between early-stage gastric cancer patients and healthy individuals.