Abstract

Colorectal cancer (CRC) has become a significant global public health challenge, demanding immediate attention due to its high incidence and mortality rates. Regular CRC screening is essential for the early detection of precancerous lesions and CRC. : We developed a novel surface-enhanced Raman scattering (SERS) analysis platform that employs high-throughput microarray chips as carriers and Au/SnO2 nanoring arrays (Au/SnO2 NRAs) as substrates. This platform utilizes an aptamer recognition-release strategy to achieve efficient and sensitive detection of protein tumor markers. In the detection process, the strong affinity and high specificity between the aptamer and the target protein result in competitive replacement of the SERS nanoprobes originally bound to the substrate surface. As a result, the SERS nanoprobes carrying Raman reporter genes are dislodged, leading to a reduction in the SERS signal intensity. The platform demonstrated excellent detection performance, with rapid detection completed within 15minutes and limits of detection (LOD) as low as 6.2×10-12 g/mL for hnRNP A1 and 6.51×10-12 g/mL for S100P. Clinical samples analyzed using the SERS platform showed high consistency with enzyme-linked immunosorbent assay (ELISA) results. This platform offers strong support for the early detection, risk assessment, and treatment monitoring of colorectal cancer precancerous lesions, with broad potential for clinical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.