Abstract

Rapid and accurate identification of tumor boundaries is critical for the cure of glioma, but it is difficult due to the invasive nature of glioma cells. This paper aimed to explore a rapid diagnostic strategy based on a label-free surface-enhanced Raman scattering (SERS) technique for the quantitative detection of glioma cell proportion intraoperatively. With silver nanoparticles as substrate, an in-depth SERS analysis was performed on simulated clinical samples containing normal brain tissue and different concentrations of patient-derived glioma cells. The results revealed two universal characteristic peaks of 655 and 717 cm−1, which strongly correlated with glioma cell proportion regardless of individual differences. Based on the intensity ratio of the two peaks, a ratiometric SERS strategy for the quantification of glioma cells was established by employing an artificial neuron network model and a polynomial regression model. Such a strategy accurately estimated the proportion of glioma cells in simulated clinical samples (R2 = 0.98) and frozen samples (R2 = 0.85). More importantly, it accurately facilitated the delineation of tumor margins in freshly obtained samples. Taken together, this SERS-based method ensured a rapid and more detailed identification of tumor margins during surgical resection, which could be beneficial for intraoperative decision-making and pathological evaluation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call