A highly effective, stable and reusable flow microreactor was developed by utilizing the environmentally sustainable porous monolithic cellulose based on a facile temperature induced phase separation (TIPS) method. The obtained microreator could be applied to efficiently and continuously catalysing the reduction reaction of 4-nitrophenol (an important reaction in water treatment) without any post-treatment or regeneration of catalysts. Moreover, the monolith overcame the brittleness of the crystalline cellulose and showed a good mechanical resilience, suggesting a great potential for the practical application in severe environment. Compared with previous reported Pd supported catalytic systems, this microreactor exhibited extremely high catalytic efficiency (turnover frequency, TOF = 4660 h−1, almost 4 times higher than that of cellulose nanocrystals supported catalyst) and long-term stability. This work provided a new strategy to construct highly effective and reusable metal NPs involved catalytic system by utilizing biodegradable cellulose materials.
Read full abstract