Abstract

Classical strong metal-support interactions (SMSI), which play a crucial role in the preparation of supported metal nanoparticle catalysts, is one of the most important concepts in heterogeneous catalysis. The conventional wisdom for construction of classical SMSI involves in redox treatments at high-temperatures by molecular oxygen or hydrogen, sometimes causing sintered metal nanoparticles before SMSI formation. Herein, we report that the aforementioned issue can be effectively avoided by a wet-chemistry methodology. As a typical example, we demonstrate a new concept of wet-chemistry SMSI (wcSMSI) that can be constructed on titania-supported Au nanoparticles (Au/TiO2-wcSMSI), where the key is to employ a redox interaction between Auδ+ and Ti3+ precursors in aqueous solution. The wcSMSI is evidenced by covering Au nanoparticles with the TiO x overlayer, electronic interaction between Au and TiO2, and suppression of CO adsorption on Au nanoparticles. Owing to the wcSMSI, the Au-TiO x interface with an improved redox property is favorable for oxygen activation, accelerating CO oxidation. In addition, the oxide overlayer efficiently stabilizes the Au nanoparticles, achieving sinter-resistant Au/TiO2-wcSMSI catalyst in CO oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.