Abstract

A highly efficient Ru-catalyzed asymmetric hydrogenation of α,β-unsaturated γ-lactams has been developed by using a C2-symmetric ruthenocenyl phosphine-oxazoline as the chiral ligand. This method achieves the enantioselective synthesis of chiral β-substituted γ-lactams in high yields and with excellent enantioselectivities (up to 99% yield with 99% ee). Mechanistic studies based on detailed control experiments and computational investigation revealed that the cationic Ru-complex acts as the active catalytic species; the protonation process of the oxa-π-allyl-Ru complex, which is formed by the migratory insertion of the C=C double bond to the Ru-H bond (the stereocontrolling step) followed by an isomerization process, is the rate-determining step, and the existence of PPh3 is crucial for the highly efficient catalytic behavior. The protocol provides a straightforward and practical pathway for the synthesis of key intermediates for several chiral drugs and bioactive compounds, particularly for the 150 kg-scale industrial production of Brivaracetam, an antiepileptic drug that shows 13-fold more potent binding to the synaptic vesicle protein 2A compared with the well-known Levetiracetam.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.