A common issue with supported metal catalysts is the sintering of metal nanoparticles, resulting in catalyst deactivation. In this study, we propose a theoretical framework for realizing a real-time simulation of the reactivity of supported metal nanoparticles during the sintering process, combining density functional theory calculations, microkinetic modeling, Wulff-Kaichew construction, and sintering kinetic simulations. To validate our approach, we demonstrate its feasibility on α-Al2O3(0001)-supported Ag nanoparticles, where the simulated sintering behavior and ethylene epoxidation reaction rate as a function of time show qualitative agreement with experimental observation. Our proposed theoretical approach can be employed to screen out the promising microstructure feature of α-Al2O3 for stable supported Ag NPs, including the surface orientation and promoter species modified on it. The outlined approach of this work may be applied to a range of different thermocatalytic reactions other than ethylene epoxidation and provide guidance for the development of supported metal catalysts with long-term stability.
Read full abstract