Abstract

Electrocatalytic water splitting (EWS) driven by renewable energy is widely considered an environmentally friendly and sustainable approach for generating hydrogen (H2), an ideal energy carrier for the future. However, the efficiency and economic viability of large-scale water electrolysis depend on electrocatalysts that can efficiently accelerate the electrochemical reactions taking place at the two electrodes. Wood-derived nanomaterials are well-suited for serving as EWS catalysts because of their hierarchically porous structure with high surface area and low tortuosity, compositional tunability, cost-effectiveness, and self-standing integral electrode configuration. Here, recent advancements in the design and synthesis of wood-structured nanomaterials serving as advanced electrocatalysts for water splitting are summarized. First, the design principles and corresponding strategies toward highly effective wood-structured electrocatalysts (WSECs) are emphasized. Then, a comprehensive overview of current findings on WSECs, encompassing diverse structural designs and functionalities such as supported-metal nanoparticles (NPs), single-atom catalysts (SACs), metal compounds, and heterostructured electrocatalysts based on engineered wood hosts are presented. Subsequently, the application of these WSECs in various aspects of water splitting, including the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), overall water splitting (OWS), and hybrid water electrolysis (HWE) are explored. Finally, the prospects, challenges, and opportunities associated with the broad application of WSECs are briefly discussed. This review aims to provide a comprehensive understanding of the ongoing developments in water-splitting catalysts, along with outlining design principles for the future development of WSECs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.