Considering that follicular development is an energy-dependent process, supplementation of the culture medium with energy substrates, such as lactose, would improve follicle viability and growth. Thus, the aim of this study was to evaluate the effect of lactose on morphology, development, glutathione (GSH) concentration, mitochondrial activity, DNA fragmentation, and meiotic resumption of oocytes from sheep secondary follicles cultured in vitro. Secondary follicles were isolated from the cortex of ovine ovaries and cultured individually for 18 days in α-MEM supplemented with bovine serum albumin (BSA), insulin, glutamine, hypoxanthine, transferrin, selenium and ascorbic acid (control medium: α-MEM+) or in α-MEM+ plus different concentrations of lactose (0.025, 0.05 and 0.1 M). After culture, some of the oocytes were subjected to TUNEL assay and in vitro maturation (IVM). Follicular morphology, glutathione (GSH) concentration and mitochondrial activity were evaluated at the end of the culture. At the day 18, the percentage of morphologically normal follicles was greater (P<0.05) in the treatment of 0.025 M lactose (92.5 %) compared to the control group (75.55 %). In addition, GSH concentrations increased (P<0.05) in treatment containing 0.025 M lactose compared to the other treatments. Furthermore, oocytes cultured in 0.025 M lactose had greater (P<0.05) mitochondrial activity levels than in α-MEM+ and 0.1 M lactose. The group α-MEM+ presented a increase of TUNEL-positive oocytes (35.09 %) compared to 0.025 lactose (9.09 %). The percentage of meiotic resumption was greater (P<0.05) in oocytes from secondary follicles cultured in 0.025 M lactose (54.5 %) than in α-MEM+ (45.5 %). In conclusion, 0.025 M lactose improved survival, GSH and active mitochondria levels and meiotic resumption of oocytes from in vitro cultured secondary follicles. Supplementation of the culture medium of preantral follicles with lactose can gradually provide energy to follicular cells, potentially enhancing the production of viable oocytes for biotechniques such as IVM and in vitro fertilization.
Read full abstract