Abstract
Gene therapies represent promising new therapeutic options for a variety of indications. However, despite several approved drugs, its potential remains untapped. For polymeric gene delivery, endosomal escape represents a bottleneck. SO1861, a naturally occurring triterpene saponin with endosomal escape properties isolated from Saponaria officinalis L., has been described as additive agent to enhance transfection efficiency (sapofection). However, the challenge to synchronize the saponin and gene delivery system in vivo imposes limitations. Herein, we address this issue by conjugating SO1861 to a peptide-based gene vector using a pH-sensitive hydrazone linker programmed to release SO1861 at the acidic pH of the endosome. Nanoplexes formulated with SO1861-equipped peptides were investigated for transfection efficiency and tolerability in vitro and in vivo. In all investigated cell lines, SO1861-conjugated nanoplexes have shown superior transfection efficiency and cell viability over supplementation of transfection medium with free SO1861. Targeted SO1861-equipped nanoplexes incorporating a targeting peptide were tested in vitro and in vivo in an aggressively growing neuroblastoma allograft model in mice. Using a suicide gene vector encoding the cytotoxic protein saporin, a slowed tumor growth and improved survival rate were observed for targeted SO1861-equipped nanoplexes compared to vehicle control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.