BackgroundDiclofenac (DFC) is a commonly detected pharmaceutical pollutant in wastewater, posing environmental risks. Microalgae have emerged as potential candidates for bioremediation due to their ability to degrade pollutants. This study focuses on investigating the biodegradation potential of two newly isolated microalgae strains, Chlorella vulgaris strain H1 and Chlorella sorokiniana strain H2, towards DFC removal. The optimization of pH is crucial for enhancing the efficiency of bioremediation processes. Therefore, in addition to assessing the biodegradation potential of microalgae, this study also investigates the impact of adjusting the pH of the culture medium using acetic acid as an additional carbon source on the biodegradation process. MethodsThrough genetic analysis using 18S rDNA sequencing, the microalgae strains were identified. Various parameters including growth dynamics, chlorophyll content, cell proliferation, photosynthetic activity, and DFC biodegradation efficiency were comprehensively assessed. Additionally, the impact of incorporating acetic acid as an additional carbon source in the culture medium on the biodegradation process was examined. Significant FindingsC. sorokiniana strain H2 demonstrated superior biodegradation rates compared to C. vulgaris strain H1 across varying DFC concentrations. Specifically, C. sorokiniana strain H2 exhibited remarkable biodegradation rates of 84 %, 83.72 %, and 29.57 % for DFC concentrations of 12.5 mg L−1, 25 mg L−1, and 100 mg L−1, respectively. In contrast, C. vulgaris strain H1 showed lower biodegradation rates of 66.64 %, 29.24 %, and 1.83 % for the corresponding DFC concentrations. The study highlights the potential of C. sorokiniana strain H2 as a promising candidate for the removal of pharmaceutical pollutants like DFC from wastewater. Furthermore, the use of acetic acid as a supplementary carbon source enhanced the biodegradation efficiency, suggesting a potential strategy for optimizing bioremediation processes.
Read full abstract