Abstract
The inefficient nitrogen removal in constructed wetlands (CWs) can be attributed to insufficient carbon sources for low carbon-to-nitrogen (C/N) ratio wastewater. In this study, sugarcane bagasse fermentation liquid (SBFL) was used as a supplemental carbon source in intermittently aerated CWs to enhance nitrogen removal. The impact of different regulated influent C/N ratios on nitrogen removal and greenhouse gas (GHG) emissions was investigated. Results demonstrated that SBFL addition significantly enhanced the denitrification capacity, resulting in faster NO3--N removal compared to sucrose. Moreover, intermittently aerated CWs significantly improved NH4+-N removal efficiency compared to non-aerated CWs. The highest total nitrogen removal efficiency (98.3 %) was achieved at an influent C/N ratio of 5 in intermittently aerated CWs with SBFL addition. The addition of SBFL resulted in a reduction of N2O emissions by 17.8 %–43.7 % compared to sucrose. All CWs exhibited low CH4 emissions, with SBFL addition (0.035–0.066 mg·m-2h-1) resulting in lower emissions compared to sucrose. Additionally, higher abundance of denitrification (nirK, nirS and nosZ) genes as well as more abundant denitrifying bacteria were shown in CWs of SBFL inputs. The results of this study provide a feasible strategy for applying SBFL as a carbon source to improve nitrogen removal efficiency and mitigate GHG emissions in CWs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.