We explore the supercritical phase of the vertex-reinforced jump process (VRJP) and the H2|2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathbb {H}^{2|2}$$\\end{document}-model on rooted regular trees. The VRJP is a random walk, which is more likely to jump to vertices on which it has previously spent a lot of time. The H2|2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathbb {H}^{2|2}$$\\end{document}-model is a supersymmetric lattice spin model, originally introduced as a toy model for the Anderson transition. On infinite rooted regular trees, the VRJP undergoes a recurrence/transience transition controlled by an inverse temperature parameter β>0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\beta > 0$$\\end{document}. Approaching the critical point from the transient regime, β↘βc\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\beta \\searrow \\beta _{\ extrm{c}}$$\\end{document}, we show that the expected total time spent at the starting vertex diverges as ∼exp(c/β-βc)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\sim \\exp (c/\\sqrt{\\beta - \\beta _{\ extrm{c}}})$$\\end{document}. Moreover, on large finite trees we show that the VRJP exhibits an additional intermediate regime for parameter values βc<β<βcerg\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\beta _{\ extrm{c}}< \\beta < \\beta _{\ extrm{c}}^{\ extrm{erg}}$$\\end{document}. In this regime, despite being transient in infinite volume, the VRJP on finite trees spends an unusually long time at the starting vertex with high probability. We provide analogous results for correlation functions of the H2|2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathbb {H}^{2|2}$$\\end{document}-model. Our proofs rely on the application of branching random walk methods to a horospherical marginal of the H2|2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathbb {H}^{2|2}$$\\end{document}-model.
Read full abstract