Abstract

We study the self energies of all particles which appear in a lattice regularization of supersymmetric QCD (${\cal N}=1$). We compute, perturbatively to one-loop, the relevant two-point Green's functions using both the dimensional and the lattice regularizations. Our lattice formulation employs the Wilson fermion acrion for the gluino and quark fields. The gauge group that we consider is $SU(N_c)$ while the number of colors, $N_c$ and the number of flavors, $N_f$, are kept as generic parameters. We have also searched for relations among the propagators which are computed from our one-loop results. We have obtained analytic expressions for the renormalization functions of the quark field ($Z_\psi$), gluon field ($Z_u$), gluino field ($Z_\lambda$) and squark field ($Z_{A_\pm}$). We present here results from dimensional regularization, relegating to a forthcoming publication our results along with a more complete list of references. Part of the lattice study regards also the renormalization of quark bilinear operators which, unlike the non-supersymmetric case, exhibit a rich pattern of operator mixing at the quantum level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.