With the continuous development of the field of information technology, there has been a demand for recording mark size of optical data storage, optical imaging resolving power, and characteristic linewidth of photolithography to reach nanoscale. However, it is very difficult to realize the goal due to the optical diffraction limit restrictions. Much interest has focused on the study of optical far-field super-resolution spot by using pupil filters. However, common concerns have continued to plague super-resolving pupil filters based on either scalar diffraction theory or vector diffraction theory. These concerns include the fact that the side lobe becomes non-negligible when the central lobe is squeezed to a certain extent. Moreover, it is difficult to reduce the super-resolving spot to nanoscale. In this work, we proposed a novel method to combine the super-resolving pupil filters with nonlinear saturable absorption thin films to reduce the central spot size to nanoscale, lower the intensity ratio of side lobe to central lobe, and elongate the depth of focus or tunable tolerance distance between the super-resolving spot and sample. The simulated results indicate that by using the three-zone annular binary phase filter as the super-resolving pupil filter and Sb2Te3 as the nonlinear saturable absorption thin films, the central spot size can be reduced to nanoscale, the side lobe intensity is squeezed to about 10% of the central lobe intensity, and the tunable tolerance distance between the super-resolving spot and the sample is about two times that of the depth of focus of the diffraction limited spot at the incident laser wavelength of 405nm and the numerical aperture of focusing lens of 0.95. The combination of the super-resolving pupil filters with the nonlinear saturable absorption thin films is very useful for nano-optical data storage, maskless nanolithography, and nano-optical imaging. It is also easy to use in actual applications because of the operation in the far-field range.