We present an experimental realisation of spatial spanwise forcing in a turbulent boundary layer flow, aimed at reducing the frictional drag. The forcing is achieved by a series of spanwise running belts, running in alternating spanwise direction, thereby generating a steady spatial square-wave forcing. Stereoscopic particle image velocimetry in the streamwise–wall-normal plane is used to investigate the impact of actuation on the flow in terms of turbulence statistics, drag performance characteristics, and spanwise velocity profiles, for a non-dimensional wavelength of λx+=397\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\lambda _x^+ = 397$$\\end{document}. In line with reported numerical studies, we confirm that a significant flow control effect can be realised with this type of forcing. The scalar fields of the higher-order turbulence statistics show a strong attenuation of stresses and production of turbulence kinetic energy over the first belt already, followed by a more gradual decrease to a steady-state energy response over the second belt. The streamwise velocity in the near-wall region is reduced, indicative of a drag-reduced flow state. The profiles of the higher-order turbulence statistics are attenuated up to a wall-normal height of y+≈100\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$y^+ \\approx 100$$\\end{document}, with a maximum streamwise stress reduction of 45% and a reduction of integral turbulence kinetic energy production of 39%, for a non-dimensional actuation amplitude of A+=12.7\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$A^+ = 12.7$$\\end{document}. An extension of the classical laminar Stokes layer theory is introduced, based on the linear superposition of Fourier modes, to describe the non-sinusoidal boundary condition that corresponds to the current case. The experimentally obtained spanwise velocity profiles show good agreement with this extended theoretical model. The drag reduction was estimated from a linear fit in the viscous sublayer in the range 2≤y+≤5\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$2 \\le y^+\\le 5$$\\end{document}. The results are found to be in good qualitative agreement with the numerical implementations of Viotti et al. (Phys Fluids 21, 2009), matching the drag reduction trend with A+\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$A^+$$\\end{document}, and reaching a maximum of 20%.Graphical abstract