Abstract

Flow-induced structural noise is an important component of hydrodynamic noise of underwater structures. Local resonance metamaterials are considered to have excellent performance and enormous potential in the field of low-frequency vibration and noise control. To verify its potential, the paper derived the underwater band gap of a lateral local resonance (LLR) plate through the plane wave expansion (PWE). Then, utilizing the modal superposition approach and Rayleigh integral technique, the vibro-acoustic response of a LLR plate under a turbulent boundary layer (TBL) excitation is obtained. Finite element certification is also conducted through an uncorrelated wall plane wave technique. Parametric study is conducted to analyse the factors which influence the control effects. The result shows that the plate exhibits excellent suppression performance for flow-induced vibration at band gap frequencies. The band gaps and suppression ranges generated by the underwater metamaterial plate, are dramatically narrowed due to the thick fluid load. The paper provides theoretical guidance for the control of flow-induced structural vibration and the application of acoustic metamaterials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call