Fuel cell electric vehicles (FCEVs) are among the devices that have emerged in recent years. To provide electricity to the electric motors, they use a proton-exchange membrane fuel cell (PEMFC) as the primary energy source and a secondary source consisting of an energy storage system (battery or supercapacitors). The addition of these sources to the motors and accessories of a vehicle requires the association of static converters to condition the different power sources. In addition, a high-efficiency and enhanced-reliability power converter is essential to connect the PEMFC to the vehicle’s DC bus. This paper proposes a robust feedback controller for a four-phase interleaved boost converter used with PEMFC. The proposed controller has double loops based on a state-feedback controller, and an inner loop which translates the differential equation of the system into a state representation by linearization around its operation points. The reference current is generated by state feedback in the outer loop; the state variable is defined by using a change variable. The strong robustness and highly dynamic characteristics of the proposed controller are demonstrated through its performance in terms of output voltage, source current, and settling time. The findings indicate that the proposed controller achieves a response time of 20 ms, resulting in an over 50% improvement compared to the controllers referenced in the literature. Additionally, it reduces both current and voltage ripple, keeping them each below 10%. Further, the controller gains synthesis is validated using the linear quadratic regulator (LQR) technique as well as boundary conditions, and its robustness is verified, taking into account the uncertainty of various operating conditions and discrepancies in circuit components. A double-loop super-twisting sliding mode controller, a backstepping control algorithm, and a PI controller are selected for comparison and discussion. Subsequently, the effectiveness of the proposed controller is evaluated through simulation with the parameters of a 500 W fuel cell system.