Abstract
This paper proposed a new method for maximum power point tracking in photovoltaic power generation systems by combining super-twisting sliding mode control and active disturbance rejection method. An incremental guidance method is used to find the point of maximum power. The non-linear extended state observer is applied to estimate the unmodeled dynamics and external disturbance. The ADRC based on a super-twisting sliding mode is designed to bring the state variables to the desired state. In the next step, the stability of NESO and ADRC are theoretically proved. Finally, the simulation results have been compared with the results of the PI controller, classical sliding mode control, and terminal sliding mode control (TSMC) presented in other articles. The results show the effectiveness and superiority of the proposed method.Also, to check the performance of the proposal method in real-time, real-time results have been compared with non-real-time results. The results obtained from the real-time and non-real-time simulations exhibited a minimal difference. This fact indicates the high accuracy of the modeling and simulations performed. Indeed, the mathematical models and non-real-time simulations have been able to accurately mimic the actual behavior of the photovoltaic system under various operating conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.