Abstract
Aiming at the vertical take-off and landing mode of tilt-propulsion UAV with uncertainties such as external environment disturbance and internal parameter perturbation, this paper studies the trajectory tracking control, and proposes an internal and external double loop sliding mode control scheme based on nonlinear extended state observer (NLESO). Firstly, according to the characteristics of tilt-propulsion UAV, the dynamic model of propulsion system, aerodynamic model of fuselage/wing and yaw rudder, and dynamic equation are established in turn to complete the dynamic modeling work. Then, the internal and external uncertainties are regarded as lumped disturbances, and NLESO is designed to estimate them and compensate the control system. Afterwards, based on NLESO and sliding mode control method, the position and attitude double loop controller of VTOL mode is designed. Finally, the Lyapunov function is designed to analyze the stability of NLESO and the whole control system. Simulation results show that the proposed method significantly improves the trajectory tracking response speed and the ability to suppress uncertainties of vertical take-off and landing mode of tilt dynamic UAV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.