The effect of tempering temperature, within the range of 400 to 700°C, on the microstructure and hardness of two super-bainitic steels, one as the control parent sample and the other with added Co & Al was investigated. Post-tempering examinations of the super-bainitic samples showed that low temperature tempering cycles (400–500°C) resulted in carbides formation, and some increases in the hardness possibly due to precipitation strengthening in the Co & Al contained steel. Once the tempering temperature increased to 600°C, the hardness plummeted in both steels due to the concurrent coarsening of the bainitic ferrite plates and more precipitation of carbides. At the higher tempering temperature of 700°C, further reduction in the hardness occurred because of the accelerated recovery of ferrite and spheroidization of carbides. This work clearly showed that the super-bainitic steel containing Co & Al had a superior tempering resistance particularly at low tempering temperatures (<500°C) due to reduced carbide precipitation in the presence of Co & Al.
Read full abstract