Laser-Doppler Anemometry (LDA) was used to study the effect of blade loading on the relative velocity field in a rotating passage of a centrifugal-pump impeller. Two variations of the impeller, 8-bladed and 16-bladed, were investigated. The measured primary and secondary velocities and turbulence show that the effect of blade loading is not that previously predicted. The 16-blade impeller with high blade loading has a rapidly thickening suction side boundary layer, suggesting the onset of transient separation near the exit. However, for the 8-blade impeller with even higher blade loading, the onset of separation is not indicated at any measured location in the impeller. At the design flow, it is concluded that the stronger potential eddy and lower solidity associated with the very high blade loading caused a change in the secondary flow pattern, retarding the growth and the likelihood of transitory separation of the suction side boundary layer.