Abstract

This paper reports on the numerical assessment of the differences in aerodynamic performance between part span shrouded and unshrouded fan blades generally found in the first stage of multistage fans in low bypass ratio aircraft engines. Rotor flow fields for both blade designs were investigated at two operating conditions using a three-dimensional viscous flow analysis. Although designed to the same radius ratio, aspect ratio, and solidity, the unshrouded fan rotor had a slightly increased tip speed (+3%) and somewhat lower pressure ratio (−3.2%) due to engine cycle requirements. Even when allowing for these small differences, the analysis reveals interesting differences in the level and in the radial distribution of efficiency between these two rotors. The reason for the improved performance of the shrouded rotor in part can be attributed to the shroud blocking off the radial migration of boundary layer fluid centrifuged from the hub on the suction side. As a result, the shock boundary layer interaction seems to be improved on the shrouded blade. At the cruise condition, the efficiency is the same for both rotors. The slightly better efficiency of the shrouded blade in the outer panel is nullified by the large efficiency penalty in the vicinity of the shroud. As there is no significant radial migration of fluid in the suction side boundary layer, as indicated by the analysis at this condition relative to the design speed case, the benefit due to the shroud is greatly reduced. At this speed and at lower speeds, the shroud becomes a net additional loss for the blade. Also of interest from the numerical results is the indication that significant blade ruggedization penalties to performance can be reduced in the case of the unshrouded blade through custom tailoring of its mean camber line.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.